REDESCRIPTION OF THE CAVE-DWELLING
BRACHYDESMUS TROGLOBIUS DADAY, 1889 (DIPLOPODA,
POLYDESMIDAE)

Dorottya Angyal1,2, Slobodan E. Makarov3 and Zoltán Korsós1

1Department of Zoology, Hungarian Natural History Museum, H-1088 Budapest, Baross u. 13, Hungary; E-mails: angyal.dorottya@nhmus.hu, korsos@nhmus.hu
2Laboratory of Molecular Taxonomy, Hungarian Natural History Museum, H-1083 Budapest, Ludovika tér 2-6, Hungary
3Institute of Zoology, Faculty of Biology, University of Belgrade, 11000 Studentski trg 16, Belgrade, Serbia; E-mail: slobodan@bio.bg.ac.rs

The cavernicolous polydesmid Brachydesmus troglobius Daday, 1889 was described from the Hungarian Abaligeti Cave (Mecsek Mountains). Although previously known from only its type locality, the species was later found in caves of other European countries. Redescriptions of the species from museum samples and newly collected material using optical and scanning electron microscopy is here complemented with mitochondrial cytochrome c oxidase subunit I (COI) sequences as barcodes. New distributional data, remarks on the species’ ecology and suggestions for its conservation are also given. Using COI sequences of 17 polydesmid taxa from GenBank and our own collections, we delimit interspecific and interfamiliar boundaries within the family Polydesmidae.

Key words: Hungary, Western Mecsek Mountains, caves, polydesmid, redescription, phylogeny, troglobiont.

INTRODUCTION

The polydesmid millipede Brachydesmus troglobius Daday, 1889 was first found in the Abaligeti Cave (South Hungary, Mecsek Mountains) on an unknown date by the Hungarian entomologist János Pável (1842–1901). It was described as a species endemic to the cave (Daday 1889) by Jenő Daday (1855–1920), curator of invertebrates in the Hungarian National Museum. The rather short description, written in Latin, did not contain any drawings; however, Daday commented on the similarity to B. subterraneus Heller, 1858: the two quite similar species can be distinguished by the different shape and structure of the collum and the gonopods. Verhoeff (1928) described and illustrated the gonopods of B. troglobius in a publication on the Hungarian millipede fauna. Later faunistic records from the Abaligeti Cave were published by Bokor (1924), Gebhardt (1934, 1963, 1967), Korsós (2000), Korsós et al.
(2006) and Angyal and Korsós (2013). *B. troglobius* was collected in numerous caves in the Dinaric Karst, as well, and there are records from Croatia, Montenegro, Romania, Serbia and Slovenia (Strasser 1971, Mršić 1988, 1994, 1998, Ćurčić & Makarov 1998, Makarov 2004, Enghoff 2013). Ceuca (1992) published a paper about the variability of the gonopod in Romanian populations of some *Polydesmus* and *Brachydesmus* – including *B. troglobius* – species. Ćurčić and Makarov (1998) described the postembryonic development of *B. troglobius* in samples from Lazareva Cave (Serbia), and revealed that the species completes its entire life cycle within the cave. However, Gebhardt (1966) and Mršić (1988) mention the observation of epigean populations in Hungary and Serbia. Makarov et al. (2012) studied the chemical defense of the species and showed that it secretes allomones against predators.

‘Integrative taxonomy’ is the science that aims to delimit the units of life’s diversity from multiple and complementary perspectives, applying comparative morphology, phylogeny, population genetics, ecology, development, behaviour, etc. (Dayrat 2005). For phylogenetic reconstruction in the order Polydesmida, cladistic analysis based solely on morphological characters has been the traditional method (e.g. Simonsen 1990, Bueno-Villegas et al. 2008, Djursvoll et al. 2000). However, recently, application of molecular taxonomic data for the same purpose also started to unfold (e.g. Marek & Bond 2006, Marek & Bond 2007, Spelda et al. 2011).

The isolated Mecsek Mountains are situated in South Hungary and surrounded by the Pannonian plains (Fig. 1). The range is populated by a relatively high number of locally endemic species, the origin of which may date back to the Tertiary and therefore may have survived mass extinctions in previous glacial periods (Gebhardt 1967). The subterranean environment of the Mecsek Mts harbors numerous endemic terrestrial and aquatic invertebrates, known only from one or a few caves (Angyal et al. 2015). Using preserved museum samples and newly collected material from two caves of the Mecsek Mts (including the type locality), our aim was to contribute to the knowledge of the morphology and molecular genetics of *B. troglobius* with the help of scanning electron microscopy, DNA barcoding and phylogenetic analysis. Our additional aim was to improve understanding of the species’ distribution and ecology and to provide a basis for future conservation management decisions.
MATERIAL AND METHODS

Sampling sites and methods

Fourteen caves of Western Mecsek Mts (South Hungary) were regularly visited between 2010 and 2013 to sample their fauna. Among these, B. trogobius populations were

Table 1. Basic data of the Abaligeti Cave and the Törökpince Cave (both in Mecsek Mts).

<table>
<thead>
<tr>
<th>Name of cave</th>
<th>Abaligeti Cave</th>
<th>Törökpince Cave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of cave</td>
<td>outflow cave</td>
<td>inflow cave</td>
</tr>
<tr>
<td>Cadastre number</td>
<td>4120-1</td>
<td>4120-13</td>
</tr>
<tr>
<td>Entrance’s altitude above sea level (m)</td>
<td>218</td>
<td>275</td>
</tr>
<tr>
<td>Entrance’s coordinates (WGS-84 FI)</td>
<td>46°08'11"N</td>
<td>46°07'57"N</td>
</tr>
<tr>
<td>Entrance’s coordinates (WGS-84 LA)</td>
<td>18°06'59"E</td>
<td>18°06'35"E</td>
</tr>
<tr>
<td>Length of cave (m)</td>
<td>2000</td>
<td>87</td>
</tr>
<tr>
<td>Vertical extension of cave (m)</td>
<td>48</td>
<td>7</td>
</tr>
</tbody>
</table>

Fig. 1. Location of the Mecsek Mts among the Hungarian karstic mountains and the Croatian Papuk Mts (map by G. Balázs)
found only in the type locality (Abaligeti Cave) and the Törököpince Cave. Both of these are situated near Abaligeti village (18 km from Pécs city), and their entrances open less then a kilometre from each other. Basic data of the two caves are listed in Table 1. The highly protected Abaligeti Cave is the largest cave known in the Mecsek Mts. With its three collaterals (Eastern, Western 1 and Western 2) and the main passage, the total length of the cave is 2000 m. Its lowest point below the entrance is 10 m, while its highest point is 38 m above the entrance (HAVASI et al. 2003). The Western 2 collateral is in connection with the Akácos Cave, which serves as a second entrance to the Abaligeti Cave. The Abaligeti Cave is characterized by both streaming and stagnant water. The most significant nutrient source of the cave is vegetable material of epigean origin aggregated in the stream’s alluvium and the decaying wooden fragments introduced by human activity. The cave has been opened to the public since 1957. Some of the most attractive speleothem formations are illuminated by lamps, which has caused the development of a ‘lamp flora’ serving as an alternative energy source for the cave-dwelling invertebrates (ANGYAL 2015). Bat guano accumulations are not a substantial element of the ecosystem, as the formerly vast bat colonies have been recently reduced (SZATYOR 2005). At 12.6 °C, the average temperature of the cave is relatively high, and considerable fluctuation can be detected only up to 40–50 m from the entrance. The relative air humidity is 97%.

The Törököpince Cave is formed in conglomerate. The cave opens with an extremely tight entrance aperture, which continues in an 87 m long, narrow horizontal passage. Recently, the cave has proven to be dry in all seasons. As the cave directly opens in deciduous woodland, its first few meters contain a massive amount of organic matter, which supports the existence of trogloxene invertebrate species in the entrance zone.

In both caves, specimens were collected by hand using entomological (soft) forceps or an aspirator, and by baited or unbaited pitfall traps. Among the different types of baits (meat, dog food, cheese, beer) used for sampling the cave invertebrate fauna, only the beer attracted the millipedes. Specimens were preserved and stored in 70% ethanol for morphological purposes and in 96% ethanol for molecular studies, and are deposited in the Myriapoda Collection of the Hungarian Natural History Museum (HNNHM), Budapest.

Morphological studies

Brachydesmus specimens were examined under a Leica M125 stereomicroscope. In some cases the male’s gonopods were dissected and studied under higher magnification. A drawing tube mounted on a Leica DM1000 light microscope was used for making drawings. Redescription was made using the characters of Polydesmida character matrix by DJURSVOLL et al. (2000) and the characters of ANTIC et al. (2013), which follow modern trends in millipede morphological taxonomy. Scanning electron micrographs of the main characters of a male and a female specimen of *B. troplobius* were made with a Hitachi S-2600 N scanning electron microscope in the Department of Botany of the HNNHM. Specimens were placed in absolute ethanol for one day, then cleaned in an EMAG Emmi-16 Ultrasonic Cleaner and air-dried. Dry samples were attached to stubs and were sputter-coated by gold-palladium. Micrographs were digitally edited. Multilayer photos of entire specimens were taken in the Department of Zoology of the HNNHM with a Nikon D5200 camera using Mitutoyo M Plan Apo 5X microscope lens and single flash diffused with a paper cylinder. Exposures were stacked with Zerene Stacker software.
Table 2. New COI samples used in the phylogenetic analysis. Abbreviations: HU = Hungary, RS = Republic of Serbia; DA = Dorotty Angyal, SM = Slobodan Makarov.

<table>
<thead>
<tr>
<th>Genbank accession</th>
<th>Species</th>
<th>Country</th>
<th>Region, town</th>
<th>Cave name</th>
<th>Date of collection</th>
<th>Collector</th>
</tr>
</thead>
<tbody>
<tr>
<td>KT343290 (BR_TRO/Ab)</td>
<td>B. troglubis</td>
<td>HU</td>
<td>Mecsek,</td>
<td>Abaligeti</td>
<td>13.06.2013</td>
<td>DA</td>
</tr>
<tr>
<td>KT343289 (BR_TRO/Ser)</td>
<td>B. troglubis</td>
<td>RS</td>
<td>West Serbia,</td>
<td>Petnička</td>
<td>21.05.2010</td>
<td>SM</td>
</tr>
<tr>
<td>KT343291 (BR_SUP/Alba)</td>
<td>B. superus</td>
<td>HU</td>
<td>Bakony,</td>
<td>Alba Regia</td>
<td>10.11.2012</td>
<td>DA</td>
</tr>
<tr>
<td>KT343292 (BR_HER/Ser)</td>
<td>B. herbogowiensis</td>
<td>RS</td>
<td>West Serbia,</td>
<td>Hadži</td>
<td>23.07.2012</td>
<td>SM</td>
</tr>
<tr>
<td>KT343288 (PO_DEN/Soly)</td>
<td>P. denticulatus</td>
<td>HU</td>
<td>Budai Mts,</td>
<td>Solymár</td>
<td>03.03.2012</td>
<td>DA</td>
</tr>
</tbody>
</table>

Molecular studies

DNA extraction of three Brachydesmus and one Polydesmus species from five different caves in Hungary and Serbia was performed in the Laboratory of Molecular Taxonomy of the HNHM, using QIAamp DNA Microkit® (QIAGEN) following the manufacturer’s instructions. For the samples used are listed in Table 2. The primer pairs were used for PCR amplifications of cytochrome c oxidase subunit I (COI) were LCO 1490 – HCO 2198 (Folmer et al. 1994) and LCO 1490 – COI-H (Machodrom et al. 2003) (Table 3). PCR products were cleaned using Roche High Pure Purification Kit® according to manufacturer’s instructions. Fragments were sequenced in an ABI 3130 sequencer, using PCR amplification primers.

Protocols and thermo profiles used in PCR were as follows:
- Primers: LCO 1490 (forward), HCO 2198 (reverse)
- PCR reactions (ca 25 μl total) were obtained by mixing 10.775 μl MQ water, 2.5 μl 10× PCR buffer (with MgCl2), 3.125 μl dNTP, 1.75 μl of each primer (5 μM), 0.01 μl Fermentas Dream Taq DNA Polymerase® (5U/μl) and 5 μl DNA extract. PCR cycling: initial denaturation for 1 min at 95 °C, denaturation for 1 min at 94 °C, hybridization for 1 min 30 sec at 42.9 °C, and polymerization for 1 min 30 sec at 72 °C. After 40 cycles the sample was left for 6 min 72 °C.

Table 3. Primers used with Brachydesmus and Polydesmus species.

<table>
<thead>
<tr>
<th>Marker</th>
<th>Primer</th>
<th>Direction</th>
<th>Sequence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>COI</td>
<td>LCO 1490</td>
<td>Forward</td>
<td>5′ GGTCACAAATCAT-AAGATATTTG G 3′</td>
<td>Folmer et al. 1994</td>
</tr>
<tr>
<td>COI</td>
<td>HCO 2198</td>
<td>Reverse</td>
<td>5′ TAAACTTCAGGTT-GACCAAAAAAT G 3′</td>
<td>Folmer et al. 1994</td>
</tr>
<tr>
<td>COI</td>
<td>COI-H</td>
<td>Reverse</td>
<td>5′ TCAGGTTGAC-CAAAAATCA G 3′</td>
<td>Machodrom et al. 2003</td>
</tr>
</tbody>
</table>
Table 4. GenBank sequences used in phylogenetic analysis.

<table>
<thead>
<tr>
<th>GenBank accession number</th>
<th>Valid name</th>
<th>Publication</th>
<th>Distribution of species</th>
</tr>
</thead>
<tbody>
<tr>
<td>HQ966183.1</td>
<td>Brachydesmus superus Latzel, 1884</td>
<td>Spelda et al. 2011</td>
<td>widely distributed in Europe, East Palaearctic, N Africa and Australia</td>
</tr>
<tr>
<td>JN306630.1</td>
<td>Polydesmus edentulus C. L. Koch, 1847</td>
<td>Spelda et al. 2011</td>
<td>widely distributed in Europe</td>
</tr>
<tr>
<td>JN306634.1</td>
<td>Propolydesmus helveticus (Verhoeff, 1894)</td>
<td>Spelda et al. 2011</td>
<td>Austria, France, Germany, Switzerland</td>
</tr>
<tr>
<td>HQ966172.1</td>
<td>Propolydesmus testaceus (C. L Koch, 1847)</td>
<td>Spelda et al. 2011</td>
<td>widely distributed in N Europe</td>
</tr>
<tr>
<td>HQ966181.1</td>
<td>Polydesmus denticulatus C. L. Koch, 1847</td>
<td>Spelda et al. 2011</td>
<td>widely distributed in Europe and Nearctic Region</td>
</tr>
<tr>
<td>HQ966182.1</td>
<td>Polydesmus denticulatus C. L. Koch, 1847</td>
<td>Spelda et al. 2011</td>
<td>widely distributed in Europe and Nearctic Region</td>
</tr>
<tr>
<td>HQ966176.1</td>
<td>Polydesmus angustus Latzel, 1884</td>
<td>Spelda et al. 2011</td>
<td>widely distributed in Europe and Nearctic Region</td>
</tr>
<tr>
<td>HQ966178.1</td>
<td>Polydesmus complanatus (Linnaeus, 1761)</td>
<td>Spelda et al. 2011</td>
<td>widely distributed in Europe, Near East and Nearctic Region</td>
</tr>
<tr>
<td>HQ966177.1</td>
<td>Polydesmus complanatus (Linnaeus, 1761)</td>
<td>Spelda et al. 2011</td>
<td>widely distributed in Europe, Near East and Nearctic Region</td>
</tr>
<tr>
<td>HQ966180.1</td>
<td>Polydesmus complanatus (Linnaeus, 1761)</td>
<td>Spelda et al. 2011</td>
<td>widely distributed in Europe, Near East and Nearctic Region</td>
</tr>
<tr>
<td>HQ966179.1</td>
<td>Polydesmus complanatus (Linnaeus, 1761)</td>
<td>Spelda et al. 2011</td>
<td>widely distributed in Europe, Near East and Nearctic Region</td>
</tr>
<tr>
<td>JN637363.1</td>
<td>Antichiropus variabilis (Attems, 1911)</td>
<td>Wojcieszek & Simmons 2012</td>
<td>Australia</td>
</tr>
</tbody>
</table>
Primers: LCO 1490 (forward), COI-H (reverse)
PCR reactions (ca 25 μl total) were obtained by mixing 8.775 μl mQ water, 2.5 μl 10×
PCR buffer, 2 μl 25 mM MgCl₂, 3.125 μl dNTP mix (2 mM), 1.75 μl of each primer (5 μM),
0.1 μl Fermentas Taq Polymerase® (5 U/μl) and 5 μl DNA extract. PCR cycling: initial de-
naturation for 1 min at 94 °C, denaturation for 1 min at 94 °C, hybridization for 1 min 30
sec at 40 °C, and polymerization for 1 min 30 sec at 72 °C. After 40 cycles the sample was
left for 6 min at 72 °C.

Phylogenetic analysis

In order to evaluate the phylogenetic relationships within the genus *Brachydesmus*
Heller, 1858, as well as the intergeneric distances between *Brachydesmus* and other poly-
desmid genera, a dataset of COI markers was compiled, using our own data and sequences
downloaded from GenBank. Accession numbers for our own samples are listed in Table 2.
Another five polydesmid species were included in the dataset (Table 4), summing up a to-
tal of nine polydesmid species in three genera. For *Brachydesmus*, only *B. superus* sequence
was available from GenBank at the time of our analysis. *Antichiroplus variabilis* (Paradoxo-
somatidae) was included in the dataset as outgroup taxon.

The DNA sequences were aligned with ClustalW (Thompson et al. 1994) implement-
ed in MEGA 6.06 (Tamura et al. 2013). Nucleotide substitution model selection carried out
with MEGA V6.0 using the Bayesian information criterion (BIC) (Schwarz 1978) revealed
that the best fitting model for COI is GTR + G + I. Phylogenetic tree was constructed using
Bayesian analysis with BEAST 1.8.0 (Drummond & Rambaut 2007) using Metropolis cou-
pled Markov chain Monte Carlo simulations for 10 million generations, sampling a tree in
every 1000 generations. After removing the first 2000 trees as burn-in, the remaining
8000 sampled trees were analyzed with TreeAnnotator v1.8.0 and visualized by FigTree
1.4.0 (Rambaut 2012). Pairwise genetic distances were calculated in MEGA 6.06 using the
Kimura 2-Parameter model (Kimura 1980).

RESULTS

Redescription of *Brachydesmus troglobius* Daday, 1889
(Figs 2–7)

Brachydesmus troglobius: Daday 1889 (description), Verhoeoff 1928 (additional morphologi-
cal data), Bokor 1924 (faunistic data), Gebhardt 1934, 1963, 1967 (faunistic data), Strasser
1971 (distributional data), Mašić 1988 (distributional data), Mašić 1994, 1998 (distribution-
al data), Ćurčić 1992 (morphological data), Ćurčić & Makařov 1998 (morphological data),
Korsós 2000 (faunistic data), Makařov et al. 2004, (distributional data), Korsós et al. 2006
(faunistic data), Makařov et al. 2012 (physiological data), Angyal & Korsós 2013 (addi-
tional distributional data), Enghoff 2013 (distributional data).

Material examined – Historic museum samples: 830/1888, 205/253, Abaligeti Cave, leg. ?, det. J. Daday, revid. D. Angyal, 2015: 2 ?, broken, in bad condition, labeled as SYM-
TYPES; 1722/1928, Abaligeti Cave, 21/10/1922, leg. E. Bokor, det. K. W. Verhoeoff, revid. E.

Fig. 2. *Brachydesmus troglobius*, male from the Abaligeti Cave, habitus and gonopods (photo by T. Németh)
Fig. 3. *Brachydesmus troglobius*, male from Törökpince Cave (in situ photo by Z. Korsós)

Figs 4-7. *Brachydesmus troglobius*, male from the Abaligeti Cave: 4 = head, frontal view, scanning electron micrograph. am 8 = antennomere VIII, c = collum, i = incisions, lt = labral teeth, mz 2 = metazonite II, mz 3 = metazonite III; 5 = gonopods in situ, scanning electron micrograph. em = exomerite, f = femorite, p = pulsilla, pf = prefemorite, sm = solenomerite, tp = telopodite; 6 = right gonopod, mesal view; 7 = posterior body segments, dorsolateral view, scanning electron micrograph. d = dentate metazonite, ep = epiproct, hp = hypoproct, mz 17 = metazonite XVII, mz 18 = metazonite XVIII, wl = walking legs
Eastern collateral, lamp flora, 13/06/2012, leg. D. Angyal, det. Z. Korsós, 3 ♀, 1 ♂; Törökpince Cave, 50 m from entrance, 11/06/2012, leg. D. Angyal, det. Z. Korsós, 1 ♀, 1 ♂.

Total body length 10–12 mm, eyeless, depigmented (from white to light brown). Adult males and females with 19 body rings (17 + 1 + telson).

Head (Figs 2–4): Broader than collum, densely covered by minute setae. Three well developed labral teeth visible. Occipital sulcus visible. Antennae long, surpassing somite 3. Antennomere I length is 2/3 of antennomere II. Antennomeres II, IV and V approximately equally long. Antennomere VI slightly shorter than antennomere III. Antennomere VII length is 1/3 of antennomere VI. One C-shaped sensitive seta on antennomere VII visible. All antennomeres densely covered with setae. Antennomeres IV–VII with 1–3 long sensitive setae. Subapically, antennomere VII with knob-supporting field of few sensitive microsetae. Apical antennomere with 4 large cones.

Collum (Figs 2, 4): Convex, anterior and posterior edge both semicircular without causal incisions of lateral sides.

Molecular studies on B. troglobius and other polydesmids

In the COI genetic distance matrix (Table 5) it was found that *B. troglobius* from the Abaligeti Cave differed only by 0.9% from *B. troglobius* collected in the Serbian Petnička Cave, and all substitutions proved to be synonymous. The two Hungarian *Brachydesmus* species (*B. troglobius* and *B. superus*) collected in caves from two different karstic areas, differed by 9.8%. As it can be seen in the Bayesian tree (Fig. 8), among the studied taxa, the closest relative of *B. troglobius* is *B. herzogowinensis*, however, further analysis will be necessary, because the length of the single available *B. herzogowinensis* COI sequence was only 430 bp long. Identification of a juvenile female specimen of *Polydesmus denticulatus* collected in the Solymári-ördöglyuk Cave was possible by comparison of its COI sequence with the *P. denticulatus* sequences available in GenBank. This *P. denticulatus* individual differed from the Hungarian
Table 5. Pairwise nucleotide K2P differences (in %) between the investigated polydesmid species/lineages.

<table>
<thead>
<tr>
<th>species</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. variabilis</td>
<td></td>
<td>0.225</td>
<td></td>
</tr>
<tr>
<td>P. cf. edentulus</td>
<td></td>
<td>0.233</td>
<td>0.105</td>
<td></td>
</tr>
<tr>
<td>B. herzogovinensis</td>
<td></td>
<td>0.242</td>
<td>0.106</td>
<td>0.079</td>
<td></td>
</tr>
<tr>
<td>B. superus_Ger</td>
<td></td>
<td>0.243</td>
<td>0.122</td>
<td>0.071</td>
<td>0.051</td>
<td></td>
</tr>
<tr>
<td>B. superus_Hun</td>
<td>0.233</td>
<td>0.117</td>
<td>0.076</td>
<td>0.086</td>
<td>0.098</td>
<td></td>
</tr>
<tr>
<td>B. troglobius_Hun</td>
<td></td>
<td>0.234</td>
<td>0.115</td>
<td>0.071</td>
<td>0.081</td>
<td>0.092</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. troglobius_Ser</td>
<td></td>
<td>0.260</td>
<td>0.159</td>
<td>0.149</td>
<td>0.138</td>
<td>0.143</td>
<td>0.162</td>
<td>0.159</td>
<td>0.154</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. angustus</td>
<td>0.249</td>
<td>0.156</td>
<td>0.155</td>
<td>0.155</td>
<td>0.155</td>
<td>0.154</td>
<td>0.161</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. complanatus_1</td>
<td>0.261</td>
<td>0.159</td>
<td>0.149</td>
<td>0.138</td>
<td>0.143</td>
<td>0.162</td>
<td>0.159</td>
<td>0.154</td>
<td>0.000</td>
<td>0.008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. complanatus_2</td>
<td>0.263</td>
<td>0.157</td>
<td>0.155</td>
<td>0.135</td>
<td>0.137</td>
<td>0.160</td>
<td>0.157</td>
<td>0.148</td>
<td>0.008</td>
<td>0.000</td>
<td>0.008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. complanatus_3</td>
<td>0.261</td>
<td>0.159</td>
<td>0.149</td>
<td>0.138</td>
<td>0.143</td>
<td>0.162</td>
<td>0.159</td>
<td>0.154</td>
<td>0.000</td>
<td>0.008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. complanatus_4</td>
<td>0.263</td>
<td>0.157</td>
<td>0.155</td>
<td>0.135</td>
<td>0.137</td>
<td>0.160</td>
<td>0.157</td>
<td>0.148</td>
<td>0.008</td>
<td>0.000</td>
<td>0.008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. denticulatus_Ger_1</td>
<td>0.257</td>
<td>0.150</td>
<td>0.162</td>
<td>0.142</td>
<td>0.160</td>
<td>0.153</td>
<td>0.153</td>
<td>0.173</td>
<td>0.163</td>
<td>0.157</td>
<td>0.163</td>
<td>0.157</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. denticulatus_Hun</td>
<td>0.258</td>
<td>0.156</td>
<td>0.180</td>
<td>0.150</td>
<td>0.168</td>
<td>0.166</td>
<td>0.166</td>
<td>0.180</td>
<td>0.170</td>
<td>0.164</td>
<td>0.170</td>
<td>0.164</td>
<td>0.013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. denticulatus_Ger_2</td>
<td>0.266</td>
<td>0.160</td>
<td>0.162</td>
<td>0.147</td>
<td>0.164</td>
<td>0.154</td>
<td>0.152</td>
<td>0.171</td>
<td>0.166</td>
<td>0.166</td>
<td>0.166</td>
<td>0.166</td>
<td>0.000</td>
<td>0.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr. helveticus</td>
<td>0.259</td>
<td>0.161</td>
<td>0.133</td>
<td>0.137</td>
<td>0.145</td>
<td>0.133</td>
<td>0.128</td>
<td>0.190</td>
<td>0.194</td>
<td>0.188</td>
<td>0.194</td>
<td>0.194</td>
<td>0.199</td>
<td>0.188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr. testaceus</td>
<td>0.230</td>
<td>0.148</td>
<td>0.127</td>
<td>0.124</td>
<td>0.145</td>
<td>0.126</td>
<td>0.121</td>
<td>0.180</td>
<td>0.186</td>
<td>0.182</td>
<td>0.186</td>
<td>0.182</td>
<td>0.161</td>
<td>0.174</td>
<td>0.168</td>
<td>0.099</td>
</tr>
</tbody>
</table>
B. troglobius by 16.6%. Distinct species within Brachydesmus had at least 7% and maximum 9% difference. Polydesmus cf. edentulus was found to be closer related to the Brachydesmus species (differed by 10.5–11.6%) than to other Polydesmus species (differed by 15.5–15.8%), which raises the question of the generic placement of this species. The maximum intrageneric distance was 17.5% within the genus Polydesmus. The average intergeneric distance within the genera Brachydesmus and Polydesmus was 15.5%. Propolydesmus species differed in an average of 13.2% from Brachydesmus species and – not counting P. cf. edentulus –, 18.4% from Polydesmus species. The outgroup taxon A. variabilis differed by at least 22.5% from the other 16 taxa.

New distribution data for B. troglobius and remarks on its ecology

Despite our repeated visits to 14 caves of the Western Mecsek Mts, Brachydesmus troglobius was found only in a single cave apart from its type locality. In the Abaligeti Cave they were distributed in the main passage, the Eastern collateral, and the Western 2 collateral (Fig. 9), feeding on the lamp flora and on decaying wood, or walking on the sediment, and rarely on speleothem forma-

![Fig. 8. Bayesian phylogenetic tree of 17 polydesmid taxa based on COI. Framed taxa represent own data](image-url)
Fig. 9. Localities of Brachydesmus troglobius in the Abaligeti Cave

Fig. 10. Localities of Brachydesmus troglobius in the Törökpince Cave
tions. Coexistence with the eutroglophile Trachysphaera schmidtii Heller, 1858 and the oniscoid isopod Haplophthalmus mengei (Zaddach, 1844) was observed on some occasions, especially on the vegetation developed on illuminated speleothems. B. troglolobius was also found in the Törökpince Cave, where male and female specimens were collected at 30 m from the entrance and from the deeper zone of the cave (Fig. 10), usually close to decaying material.

DISCUSSION

Application of modern molecular phylogenetic methods and morphological studies on the polydesmid Brachydesmus troglolobius enabled understanding its relationship with other taxa. COI sequences of individuals from the Serbian Petnička Cave and from the Abaligeti Cave showed only 0.9% K2P difference, which may suggest that the epigean ancestor, which had been distributed in the Carpathian Mts and the Dinaric Alps, started to colonize the underground habitats and to evolve in isolation during the recent geological past.

Identification of polydesmid diplopods in the absence of mature males is circumstantial in some cases. The example of Polydesmus denticulatus identified by comparison of COI sequences shows the value of complementing traditional morphology with molecular systematics. The results of the phylogenetic study of polydesmid species in this article may help in future delimitation of intrageneric and intergeneric boundaries of European Polydesmidae.

Due to the isolation of hypogean habitats of the Mecsek area, a high degree of endemism likely developed in cave millipedes. Verhoeff (1928) found very interesting the mixed zoogeographical character of the diplopod fauna of the Abaligeti Cave. He noted the relationship of Brachydesmus troglolobius with the Croatian-Illyrian fauna, while he considered Hungarosoma bokori (Verhoeff, 1928), also found in the Abaligeti Cave (Korsós 2000), to be related to the Asian millipede fauna. The circum-Pannonian distribution of H. bokori corresponds with the hypothesis that Hungarosoma belongs to relict fauna of the microplates (mega-blocks) in the area of the present Hungary during the Tertiary period, which have recently slumped under sediments of the Pannonian Lowland (Mock et al. 2014, 2016). Verhoeff (1928) presumed the common lineages of Haasea hungarica (Verhoeff, 1928), another species from the Abaligeti Cave (Korsós 2000), and the Central European millipede species, thereby indicating a European instead of Asian affiliation.

Predation and competition for resources are less intensive in subterranean habitats than in epigean ones, due to the absence of higher trophic levels, to the low abundance of the species, and to the relatively constant environmental factors (Culver & Pian 2009). Brachydesmus troglolobius seems to maintain a stable population in the Abaligeti Cave, using all types of vegetable organic

material. Although the appearance of the lamp flora is both an aesthetic and conservational problem in public caves like the Abaligeti Cave, the vegetation confined to them seemed to be a regular source of energy not only for *B. troglobius*, but also for other detritivores (Angyal 2015). For this reason, the lamp flora should not be removed without considering the associated invertebrates. Live invertebrates could be recovered from manually removed vegetation by sifting or Berlese extraction on the spot, and could be transported to an unperturbed part of the cave, near to another potential nutrition source. Although *B. troglobius* is known from some other European countries, in Hungary the species possesses only one known locality apart from its type locality. Owing to their extremely narrow Hungarian distribution, the two local populations (one in the Abaligeti Cave and another in the Törökpince Cave) are rare and of potential conservation value.

Acknowledgement – Timea Szederjesi (Plant Protection Institute, Hungarian Academy of Sciences and Department of Zoology, HNHM) is gratefully acknowledged for her help provided in phylogenetic analysis and in upload of barcode sequences. We are thankful to Dr. Krisztina Buczko (Department of Botany, HNHM) for her help during the scanning electron microscopy. We are also grateful to Dr. Virág Krízsik and Mária Tushek (Laboratory of Molecular Taxonomy, HNHM) for their help during the molecular studies. Gergely Balázs (Department of Systematic Zoology and Ecology, Eötvös Loránd University) is acknowledged for making Figure 1 and computer graphic editing some of the figures. We also thank to Tamás Németh (Department of Zoology, HNHM) for making the multilayer photos. Researchers of the Pro Natura Karst and Cave Research Society are acknowledged for their company during the sampling cave-trips. We are very grateful to the two anonymous reviewers who gave valuable suggestions to improve an earlier version of the manuscript.

REFERENCES

Received September 16, 2015, accepted August 10, 2016, published March 3, 2017