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Responses to climate warming vary considerably. Cold-adapted species mostly escape rising
temperatures by latitudinal and/or altitudinal range shifts, and often today occur in isolated
remnants. In the present study we discuss the genetic consequences of climate warming for
five butterfly taxa (Lycaena helle, Erebia epiphron, Erebia sudetica inalpina, Coenonympha
darwiniana and C. macromma) which currently show relict-like distributions at least in parts
of their distribution ranges. For all these species, genetic data (microsatellite and/or allozyme
polymorphisms) already exist. In general, the situation for such high montane/alpine species
in the Alps differs from that in the low-altitude mountains, as the considerably higher eleva-
tions of the Alps mean that there is still possibility for further altitudinal shifts, while no such
possibilities exist in lower mountain ranges. However, there are considerable differences in
the general genetic situation of the five taxa analysed. The genetic structure of the Alpine L.
helle populations is quite similar to that of the populations in the northern Alps forelands and
the lowlands of eastern Europe. However, the lower mountain systems of western Europe all
represent considerably differentiated gene pools for this species, so that these might be endan-
gered by climate change. At the contrary, the relict population of E. epiphron in the Jesenik
Mts is genetically not differentiated from the northern Alps. Taxa such as Erebia sudetica
inalpina, Coenonympha darwiniana and C. macromma, which are all confined to certain parts
of the Alps, represent endemic gene-pools. Of these taxa, E. sudetica inalpina shows low pop-
ulation genetic diversity, while the other two species have high allozyme diversity. Therefore,
climate change accompanied by altitudinal range shifts might not have an effect on the genetic
composition of the former, but might cause losses of genetic diversity in the latter two taxa. In
conclusion, the data of these five taxa show that climate change will have different effects on
different species of relict-like distributions.
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INTRODUCTION
RESPONSES TO CLIMATE CHANGE

Many scientific studies have addressed the effects of recent climate changes
on distribution patterns (PARMESAN et al. 1999, THOMAS & LENNON 1999, PAR-
MESAN & YOHE 2003, ROOT et al. 2003, PARMESAN 2006). These changes can
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also have severe impacts on species-interactions; thus, spatial mismatches of
trophically interacting species can arise as a result of range shifts (SCHWEIGER et
al. 2008). In addition, many studies were also conducted to analyse species distri-
bution modifications as a consequence of climate change along glacial-interglacial
oscillations (COOPE 1994, HEWITT 2004, SCHMITT 2007). These oscillations
caused extinction processes of thermophilic species over major parts of Central
Europe during the glacial period, or survival in southern refugia (HEWITT 1996,
HABEL et al. 2005, 2008a, SCHMITT et al. 2005b). In contrast to these warm-adapted
organisms, boreo-montane and arctic-alpine species might have reached their
maximum distributions over the Central European lowlands during glaciations,
but then escaped the postglacial warming by migrating to higher altitudes and lati-
tudes (VARGA & SCHMITT 2008, SCHMITT 2009). These species therefore are of
great interest in integrating the past distribution history and recent climate-driven
changes.

Today, such cold-adapted species are therefore restricted to the highest ele-
vations of low altitude mountains scattered over Central Europe. Here, these spe-
cies have often already reached the elevation limit and thus cannot respond to fur-
ther rising temperatures. For these populations, life in complete isolation is en-
hancing processes of population dynamics, such as population fluctuations
(LESICA & ALLENDORF 1995) and population stochasticity (MELBOURNE & HAST-
INGS 2008). This results in losses of genetic diversity in local sites through drift,
which cannot be compensated by immigration from neighbouring populations.
Such genetically impoverished populations often suffer from decreased fitness and
the accumulation of weakly deleterious alleles (REED & FRANKHAM 2003, ALLEN-
DORF & LUIKART 2006).

In this article, we discuss the genetic data known for five mountain butterfly
species (Lycaena helle, Erebia epiphron, Erebia sudetica inalpina, Coenonympha
darwiniana and C. macromma; SCHMITT et al. 2005a, 2006, HAUBRICH &
SCHMITT 2007, FINGER et al. 2009, HABEL et al. 2010a, b, c, SCHMITT & BESOLD
2010) in the light of recent global warming. We especially focus on the importance
and relevance of relict-like populations of these species and work out the similari-
ties and differences between them.

THE FIVE MOUNTAIN BUTTERFLY TAXA

The lycaenid butterfly Violet Copper Lycaena helle (DENIS & SCHIFFER-
MÜLLER, 1775) is an example of a combination of postglacial retreat to higher ele-
vations and northwards shift. This species has almost completely lost its lowland
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populations over major parts of its former European distribution area, especially at
the species’ western distribution edge (BOZANO & WEIDENHOFFER 2001). This
pattern has led to highly disjunct population remnants, mostly restricted to higher
elevations. The species requires cold and moist habitats (BACHELARD & DE-
SCIMON 1999, STEINER et al. 2006); further specific habitat characteristics are for
example high abundances of the species’ larval food plant Polygonum bistorta and
habitat structures with shrubs and trees (TURLURE et al. 2009). The altitudinal
range of this species is varying from little above sea level in Scandinavia and north-
eastern Europe to an upper limit at about 1.800 m in the Alps and Pyrenees
(TOLMAN & LEWINGTON 1998); the lowest occupied habitats in Switzerland are
located at about 600 m (SCHWEIZERISCHER BUND FÜR NATURSCHUTZ 1987). Be-
sides the climate warming the recent anthropogenic habitat destruction reinforced
further habitat fragmentation (FISCHER et al. 1999). This combination has caused
extinction of many local populations and the species is listed in appendices II and
IV of the Nature 2000 directive (DREWS & PRETSCHER 2003) and many Red Data
Books. Thus, L. helle is considered one of the most endangered butterfly species in
Europe (VAN SWAAY & WARREN 1999).

The Mountain Ringlet Erebia epiphron (KNOCH, 1783) shows similar
postglacial range shift patterns as L. helle, but has retreated to the northern parts of
the British Isles rather than to Fennoscandia (KUDRNA 2002). Furthermore, the
altitudinal range of the species on average is higher than for L. helle (900–2,700 m,
populations of lower altitudes are only known for the northern UK) (TOLMAN &
LEWINGTON 1998). Erebia epiphron is also found in a larger number of Central
European low-altitudinal mountains, e.g. in the Jesenik Mts in northern Moravia
(SCHMITT et al. 2005a).

Some taxa distributed in the same altitudinal belts as L. helle and E. epiphron
are strongly restricted to some small and isolated areas of the Alps. In this article
we refer to three taxa: Erebia sudetica inalpina WARREN, 1949 endemic to the area
of Grindelwald in Switzerland with an altitudinal range from 1,300 to 1,900 m
(SONDEREGGER 2005); Coenonympha darwiniana STAUDINGER, 1871 restricted
to the southern Alps between eastern Valais and western Graubünden (SCHMITT &
BESOLD 2010) with an altitudinal range from 800 to 2,100 m (TOLMAN &
LEWINGTON 1998); and Coenonympha macromma TURATI & VERITY, 1911 en-
demic to the Alpes Maritimes (SCHMITT & BYESOLD 2010) and an identical alti-
tudinal range as its sibling species. All these four Satyrinae species need high-
montane to alpine meadows of low to medium vegetation height; their larvae feed
on different species of grasses (SCHWEIZERISCHER BUND FÜR NATURSCHUTZ 1987,
SONDEREGGER 2005).
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EXAMPLE: LYCAENA HELLE

Genetic data for L. helle based on five highly polymorphic microsatellite loci
(HABEL et al. 2008b) give a clear resolution and strong evidence on a regional
(FINGER et al. 2009) as well as on the continental level (HABEL et al. 2010a, b, c),
and are suitable to demonstrate past range shifts (going back at least to the last gla-
cial period) (cf. KIMBERLY & SELKOE 2006).

Postglacial colonisations of Lycaena helle

In a neighbour-joining dendrogram based on genetic distances sensu CAVAL-
LI-SFORZA and EDWARDS (1967) all Fenoscandian samples build one branch most
closely related to eastern European populations (Fig. 1). While the Finnish popula-
tions are genetically closer to the eastern European ones than the Swedish popula-
tions, these similarities mirror the feasibility of this postglacial expansion route
(eastern Europe–Finland–Sweden), also reflected in losses of alleles during this
colonisation process. This colonisation pathway of L. helle from north-eastern Eu-
rope via Finland to Sweden mostly coincides with that of Trollius europaeus
(DESPRES et al. 2002) and maybe Ranunculus glacialis (SCHÖNSWETTER et al.
2003).

Evolution on mountain archipelagos in Lycaena helle

The low-altitude mountains of western Europe provided exclaves of suitable
climatic conditions for cold-adapted species during the postglacial warming.
These mountain areas are geographically isolated from each other. After colonis-
ation, individual exchanges among these areas have been restricted, as shown, for
example, by genetic analyses of L. helle: The studied populations of the Massif
Central, Madeleine Mountains, Vosges, Ardennes, Eifel and Westerwald represent
strongly differentiated and distinct gene pools affected by the strong isolation over
several thousands of years (HABEL et al. 2010a, c). They are also characterised by
private alleles; more than 11% of the total number of alleles analysed are endemic
to a single mountain area (Fig. 2). In addition to this genetic uniqueness in
microsatellite alleles, morphological characters distinguish the populations of
each of these mountain areas so that L. helle was split into nine subspecies (MEYER
1982). The combination of distinct genetic and morphological characters may be
used to define them as evolutionarily significant units sensu MORITZ (1994) to un-
derpin the high evolutionary value of these relict populations.
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Fig. 1. Neighbour-joining tree based on genetic distances (CAVALLI-SFORZA & EDWARDS 1967)
performed on five microsatellite loci, representing the analysed populations of Scandinavia, Finland,
eastern Europe (Poland, Lithuania, Romania) and the Vosges. Genetic distances are projected on a
map. Solid lines display the genetic distance, arrows show the locations of the sampling sites. Data

recalculated from HABEL et al. (2010c)
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Fig. 2. Allele frequency distributions of L. helle populations of the Pyrenees and the western low-alti-
tude mountains (Massif Central, Vosges, Ardennes). The colours in the pie charts indicate the distri-
bution of alleles (white: occurring in several mountain areas, black: exclusive to a single mountain
area, grey: exclusively occurring in the respective population). Data taken from FINGER et al. (2009)

and HABEL et al. (2010a, b)



These genetic results also underline that L. helle is suffering from anthropo-
genic habitat deterioration and rising isolation; particularly the populations scat-
tered over the species’ western distribution range suffer from the low or even miss-
ing exchange rates of individuals (HABEL et al. 2010a). Even within the analysed
mountain areas, isolation-by-distance systems support the geography-dependent
interconnectivity of local populations (FINGER et al. 2009).

Predictions for the future distribution of Lycaena helle

A Climate Envelope Model (CEM) (PHILIPS et al. 2006) identified and quan-
tified the climatically suitable habitats for L. helle and possible connections be-
tween them (for details see HABEL et al. 2010c). These projections of the climatic
envelope into the geographic space allow to assess the potential distribution of the
butterfly under the current climate (cf. ARAUJO & WHITTACKER 2005). The result-
ing areas with a predicted suitability of >75% are restricted to higher elevations
and the North, and are all separated from each other by unsuitable areas (HABEL et
al. 2010c); this models mostly match with the actual distribution of the species
(KUDRNA 2002). These results coincide with the genetic picture of isolated rem-
nant population groups aggravated by the low dispersal power of L. helle (BINK
1992). This pattern is corroborated by strong genetic differentiation between
neighbouring mountain areas like the Ardennes/Eifel complex and the Westerwald
(FINGER et al. 2009) or even neighbouring populations within such mountain areas
(HABEL et al. 2010a, b).

Applying different scenarios of climate warming, the climate envelope mod-
els (CEMs) suggest a strong decline of potentially suitable habitats, especially at
the western edge of the species’ distribution. Most of the recent areas of predicted
suitability may disappear. Areas with a predicted suitability of 75% remain exclu-
sively over areas of the Jura Mts and the Alps. Areas with a predicted suitability of
at least 50% remain in parts of the Massif Central, the Pyrenees and the Vosges.
Even over major parts of the Alps, potentially suitable habitats may largely disap-
pear (HABEL et al. 2010b).

EXAMPLE: EREBIA EPIPHRON

Genetic structures within mountain archipelagos of Erebia epiphron

A study of allozyme polymorphisms of E. epiphron also distinguished sev-
eral strongly differentiated genetic lineages in this species, calling for a variety of
different glacial retreats and differentiation centres around and between the moun-
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tain systems of Europe. In contrast to L. helle, the strongly isolated populations
from the Jesenik Mts in northern Moravia was grouped together with the northern
Alpine lineage (SCHMITT et al. 2006). The genetic constitutions of the other low-
altitudinal mountain populations (e.g. Massif Central, Vosges) are still unknown
for this species, but are suspected not to be endemic to these areas, as all of them
are less isolated from other high mountain populations of the species than the
Jesenik Mts.

Genetic constitution of Erebia epiphron in the Jesenik Mts

Nevertheless, E. epiphron shows a remarkable variability of genetic diversi-
ties in Jesenik Mts. Here, the species is quite common along the main ridge in a
large, mostly continuous population, but is also found in an isolated but small area
of subalpine grassland west of the main ridge separated from the ridge population
by some four kilometres of forest. This small population has a strongly impover-
ished genetic diversity compared to that of the main ridge, and indications of de-
generation such as partial albinisms of the wing coloration have been observed
(SCHMITT et al. 2005a). Therefore, the genetic make-up maintained by this small
population is apparently inadequate for its long-term survival.

EXAMPLES: EREBIA SUDETICA INALPINA,
COENONYMPHA DARWINIANA, C. MACROMMA

The genetic diversity of mid-altitude endemics of the Alps

In contrast to the low-altitude mountains of Central Europe, mid-altitude spe-
cies should not be dramatically threatened by climate warming in the Alps as uphill
habitat shifts are well possible in Europe’s highest mountain system. However, the
strongly localised endemic taxa in this group differ in that they express strongly
different levels of genetic diversity. Thus, the ringlet E. sudetica inalpina has low
genetic diversity (HAUBRICH & SCHMITT 2007), but the genetic situation is con-
siderably different for the two endemics C. darwiniana and C. macromma. The
populations of these two species show remarkable genetic diversity (SCHMITT &
BESOLD 2010), which is even higher than in the two other representatives of this
species complex, the high altitude C. gardetta (SCHMITT & BESOLD 2010) and the
lowland taxon C. arcania (BESOLD et al. 2008a); indeed, the populations even
reach the extremely high genetic diversities of the very common and fairly wide-
spread congeneric C. pamphilus (BESOLD et al. 2008b).
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THE FUTURE OF RELICT POPULATIONS
OF MOUNTAIN BUTTERFLY SPECIES

Many of the populations of L. helle, but also of other occurrences of alpine
species in the European low-altitude mountains as for example E. epiphron, may
be highly threatened by climate change in many of their populations in mountains
systems without major uphill escape possibilities. These predicted losses of suit-
able habitats would also involve losses of genetically unique groups of popula-
tions. However, whether such lost populations will represent a unique gene pool as
in the case of L. helle or will be represented by replica in other, higher mountain
systems as in the case of E. epiphron, need individual analyses in every single case.

The scenario of further climate warming might present a severe threat for the
survival of E. epiphron in the Jesenik Mts, not only due to the risk of complete loss
of habitat in this mountain range, but also as the possibly remaining areas suitable
for this species here and possibly many others in the Central European low-altitude
mountains will not support the existence of sufficiently large populations of this
species conserving gene pools of adequate diversity. This might also be a problem
for many other species with regressive populations. Thus, even populations of L.
helle might disappear in areas predicted as habitat by the CEM models due to de-
generation effects of their gene pools (REED & FRANKHAM 2003, SCHMITT &
HEWITT 2004).

Finally, quick uphill habitat shifts due to dramatic climatic changes might re-
sult in considerable losses of genetic diversity of the affected populations. While
such genetic bottlenecks may negatively influence the populations’ viability (REED
& FRANKHAM 2003), such changes might be critical especially for genetically di-
vers taxa like C. darwiniana and C. macromma and possibly also for other local
mid-altitude endemics of the Alps which show either such high genetic population
diversity or low individual mobility. Therefore, uphill shifts might also negatively
impact the highly polymorphic populations of L. helle. In contrast, taxa with low
genetic diversity like E. sudetica inalpina might be less affected by such genetic
bottleneck effects due to their genetic poverty so that even a quick up-slope
translocation by climate warming, even in the case of reduced available habitat at
higher elevations, should not result in any remarkable genetic consequences for
this taxon.

Therefore, major and rapid climate-driven uphill shifts in the future might
strongly impact the genetic make-up of many mid-altitude populations, especially
in the high mountain systems, and particularly in species of generally high genetic
diversity, while many of the populations and entire genetic lineages in lower
mountain systems might be lost for ever.
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