KARYOLOGY OF THREE VESPERTILIONID BATS (CHIROPTERA: VESPERTILIONIDAE) FROM TURKEY

KARATAŞ, A.¹ and SOZEN, M.²

¹Niğde University, Faculty of Science and Arts, Department of Biology
Niğde TR-51200 Turkey, E-mail: rousettus@hotmail.com
²Zonguldak Karaelmas University, Faculty of Science and Arts, Department of Biology
TR-67100 Zonguldak, Turkey

The karyotypes of three vespertilionid bat species from Turkey were examined. The karyotypes of *Eptesicus serotinus* and *Eptesicus bottae* were found to be identical in diploid number (2n) and fundamental number of chromosomal arms (NF) with 2n = 50, NF = 52 and NFa = 48. The karyotypes were found as 2n = 42, NF = 54, and NFa = 50 for *Nyctalus noctula*. The karyological characteristics of *E. bottae anatolicus* and *N. noctula* were studied for the first time from Turkey.

Keywords: Chiroptera, *Eptesicus serotinus*, *Eptesicus bottae*, *Nyctalus noctula*, karyotype, Turkey

INTRODUCTION

According to the most recent taxonomical studies, there are 37 species of bats in Turkey (KOOPMAN 1994, BENDA & HORÁČEK 1998, SACHANOWICZ et al. 1999, HORÁČEK et al. 2000, SPITZENBERGER et al. 2003, BENDA et al. 2003, JUSTE et al. 2004, BENDA & KARATAŞ 2005). To date, karyotypes of *Eptesicus bottae* and *Nyctalus noctula* have not been examined in Turkey. There is no information on the karyology of *E. b. anatolicus* in all the distributional area. On the other hand, karyology of the *Eptesicus serotinus* from Turkmenistan has been studied (VORONTSOV et al. 1969), Poland (FEDYK & FEDYK 1970, FEDYK & RUPRECHT 1983), Tunisia (BAKER et al. 1975), Azerbaijan (FATTAEV 1978), former Czechoslovakia (ZIMA 1978), Greece (VOLLETH 1987), Kyrgyzstan (ZIMA et al. 1991), Turkey (AŞAN 2001) and Taiwan (LIN et al. 2002); *E. bottae* from Kyrgyzstan (ZIMA et al. 1989), *N. noctula* from former Yugoslavia (ĐULIĆ et al. 1967), former Czechoslovakia (ZIMA 1978), former USSR (VORONTSOV et al. 1969), Germany (VOLLETH 1987, 1992).

E. serotinus is distributed in almost all regions of Turkey (SPITZENBERGER 1994, BENDA & HORÁČEK 1998, KARATAŞ 2000). But there are only a few distributional records of *N. noctula* from Mersin and the European part of Turkey (BENDA & HORÁČEK 1998). Additionally, *E. bottae* is commonly restricted to the Turkish Mediterranean coasts (SPITZENBERGER 1994, KARATAŞ 2000).
In addition to traditional taxonomical studies of morphological characteristics, karyological comparisons can also provide very useful data on phylogenetic and taxonomic problems (VOLLETH et al. 2001), that is why the karyological characteristics of *Eptesicus serotinus*, *E. bottae anatolicus*, and *Nyctalus noctula* were determined.

MATERIAL AND METHODS

Bat specimens (N = 12) were captured by using mistnet and handnet from five localities (Alanya, Demirköy, İzmit, Silifke, Zonguldak) in Turkey between 2001 and 2004 (Fig. 1) and were examined with respect to karyological characteristics.

Conventional stained chromosomes of specimens were examined according to standard procedures. By examining the photographs of about 20–30 metaphase cells of each animal, the diploid number of chromosomes (2n), the fundamental number of chromosomal arms (NF) and the number of autosomal arms (NFa) were determined along with metacentrics, submetacentrics, subtelocentrics and acrocentrics with respect to centromere positions.

All specimens were skinned in the standard museum format, their skins, skulls and karyotype preparations have been deposited at the Department of Biology, Niğde University (ZDNU).

Fig. 1. Map of localities studied in Turkey: 1 = Demirköy (Kırklareli), 2 = Gebze (Kocaeli), 3 = Sofular (Zonguldak), 4 = Alanya (Antalya), 5 = Silifke (Mersin). *Eptesicus serotinus* (●), *E. bottae anatolicus* (■), *Nyctalus noctula* (▲)
RESULTS

Eptesicus serotinus (SCHREBER, 1774)

Karyotype: The karyotype of the species consisted of 2n = 50 and NF = 52. Since the specimens examined were females, we could not determined sex chromosomes directly, however, it is most likely that bi-armed chromosomes are X chromosomes. In this case, the NFA value is 48. Autosomal chromosomes are acrocentrics, but, two pairs are dot-like (Fig. 2).

Eptesicus bottae anatolicus FELTEN, 1971

Karyotype: The species had a karyotype of 2n = 50, NF = 52 and NFA = 48. All of the autosomal chromosomes are acrocentrics, the two smallest of which are

![Fig. 2. Karyotype of a female _E. serotinus_ from Gebze (2n = 50, NFA = 48)](image-url)
Fig. 3. Karyotype of a female *E. bottae anatolicus* from Silifke (2n = 50, NFa = 48)

Fig. 4. Karyotype of a male *N. noctula* from Demirköy (2n = 42, NFa = 50)
dot-like and the X chromosome is medium-sized metacentric. The morphology of chromosomes is identical with that of *E. serotinus* (Fig. 3).

Nyctalus noctula (SCHREBER, 1774)

Karyotype: The karyotype of the species was found as 2n = 42, NF = 54, and NFa = 50. The X chromosome is a medium-sized submetacentric, and the Y chro-

Table 1. A comparison of the chromosomal data for the species examined. (M/Sm: meta-submetacentric, M: metacentric, Sm: submetacentric, St: subtelocentric, A: acrocentric, D_M: dot-like metacentric, D_A: dot-like acrocentric)

<table>
<thead>
<tr>
<th>Species/subspecies</th>
<th>2n</th>
<th>M/Sm</th>
<th>A</th>
<th>D_M</th>
<th>D_A</th>
<th>NF</th>
<th>X</th>
<th>Y</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. serotinus</td>
<td>50</td>
<td>–</td>
<td>44</td>
<td>–</td>
<td>4</td>
<td>48</td>
<td>Sm</td>
<td>?</td>
<td>Tunisia (BAKER et al. 1975)</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>–</td>
<td>48</td>
<td>–</td>
<td>–</td>
<td>48</td>
<td>Sm</td>
<td>A</td>
<td>Azerbaijan (FATTAEV 1978)</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>–</td>
<td>48</td>
<td>–</td>
<td>–</td>
<td>48</td>
<td>Sm</td>
<td>D_A</td>
<td>Kyrgyzstan (ZIMA et al. 1991)</td>
</tr>
<tr>
<td>E. s. serotinus</td>
<td>50</td>
<td>–</td>
<td>44</td>
<td>2</td>
<td>2</td>
<td>50</td>
<td>Sm</td>
<td>A</td>
<td>former Czechoslovakia (ZIMA 1978)</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>–</td>
<td>48</td>
<td>–</td>
<td>–</td>
<td>48</td>
<td>Sm</td>
<td>M</td>
<td>Poland (FEDYK & FEDYK 1970)</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>–</td>
<td>48</td>
<td>–</td>
<td>–</td>
<td>48</td>
<td>Sm</td>
<td>M</td>
<td>Poland (FEDYK & RUPRECHT 1983)</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>–</td>
<td>48</td>
<td>–</td>
<td>–</td>
<td>48</td>
<td>Sm</td>
<td>A</td>
<td>Greece (VOLLETH 1987)</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>–</td>
<td>2</td>
<td>46</td>
<td>–</td>
<td>50</td>
<td>Sm</td>
<td>A</td>
<td>Turkey (AŞAN 2001)</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>–</td>
<td>44</td>
<td>–</td>
<td>4</td>
<td>48</td>
<td>M</td>
<td>?</td>
<td>This study</td>
</tr>
<tr>
<td>E. s. turcomanus</td>
<td>50</td>
<td>–</td>
<td>44</td>
<td>–</td>
<td>4</td>
<td>48</td>
<td>Sm</td>
<td>A</td>
<td>Turkmenistan (VORONTSOV et al. 1969)</td>
</tr>
<tr>
<td>E. s. horikawai</td>
<td>50</td>
<td>–</td>
<td>48</td>
<td>–</td>
<td>–</td>
<td>48</td>
<td>Sm</td>
<td>A</td>
<td>Taiwan (LIN et al. 2002)</td>
</tr>
<tr>
<td>E. b. anatolicus</td>
<td>50</td>
<td>–</td>
<td>48</td>
<td>–</td>
<td>4</td>
<td>48</td>
<td>M</td>
<td>?</td>
<td>This study</td>
</tr>
<tr>
<td>Nyctalus noctula</td>
<td>42</td>
<td>8</td>
<td>2</td>
<td>26</td>
<td>–</td>
<td>50</td>
<td>M</td>
<td>Sm</td>
<td>former Yugoslavia (ĐULIĆ et al. 1967)</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>8</td>
<td>2</td>
<td>26</td>
<td>–</td>
<td>50</td>
<td>M</td>
<td>D_A</td>
<td>former USSR (VORONTSOV et al. 1969)</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>8</td>
<td>2</td>
<td>26</td>
<td>–</td>
<td>50</td>
<td>M</td>
<td>D_A</td>
<td>former Czechoslovakia (ZIMA 1978)</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>10</td>
<td>–</td>
<td>30</td>
<td>–</td>
<td>50</td>
<td>M</td>
<td>D_A</td>
<td>Germany (VOLLETH 1987, 1992)</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>10</td>
<td>–</td>
<td>26</td>
<td>–</td>
<td>50</td>
<td>M</td>
<td>D_A</td>
<td>this study</td>
</tr>
</tbody>
</table>

Acta zool. hung. 53, 2007
mosome is dot-like acrocentric. The autosomal set consists of four pairs of meta-
centric, one pair of submetacentric and 15 pairs of acrocentric, the two smallest of
which are dot-like (Fig. 4).

Specimen examined: Kırklareli: Demirköy, Balaban Stream, Velika (Balaban) Bridge,

DISCUSSION

The karyological characteristics of E. serotinus from Turkey were studied by
AŞAN (2001) and determined as being 2n = 50, NFa = 50 and having one subtelo-
centric autosomal pair. However, it was found in the present study that the karyo-
types of E. serotinus from Alanya (Antalya), Gebze (Kocaeli), and Zonguldak did
not contain this subtelocentric autosomal pair. Our result is consistent with the re-
sults of BAKER et al. (1975) from Tunisia; FATTAEV (1978) from Azerbaijan;
ZIMA et al. (1991) from S Kyrgyzstan; FEDYK & FEDYK (1970), and FEDYK &
RUPRECHT (1983) from Poland; VOLLETH (1987) from Greece; VORONTSOV et al.
(1969) from Turkmenistan and LIN et al. (2002) from Taiwan (Table 1). These re-
sults show that 2n = 50, NFa = 50 form of E. serotinus is common from Europe to
Taiwan. E. serotinus is widely distributed in Turkey and specimens from Antalya,
Kocaeli, and Zonguldak were studied here.

The karyotype of E. bottae from central Asia was studied by ZIMA et al.
(1989). The results of the present study from Anatolia are consistent with S
Kyrgyzstan (Table 1). The diploid chromosomes and the number of chromosomal
arms of each of these populations were 2n = 50, NFa = 48. Since males were not
available, the Y chromosome could not be determined in the present study directly,
and the bi-armed pair accepted as X chromosomes.

The distribution of E. bottae anatolicus in Anatolia is commonly restricted to
the Mediterranean parts of Turkey. The karyotype of the species from Turkey was
first described in the present study using a single specimen from Silifke (Mersin).

N. noctula has been karyotyped from the countries presented in Table 1. The results
described here were consistent with the result of VOLLETH (1987, 1992)
from Germany and DULIĆ et al. (1967) from former Yugoslavia in 2n and NFa va-
ues, but different from that of others in NFa value (Table 1). On the other hand,
there are differences in the shape of the X and Y chromosomes. The distributional
records of this species were also very rare and restricted to Thrace (see BENDA &
HORÁČEK 1998) and Tarsus (OSBORN 1963) in Turkey. The specimen karyotyped
here was collected from Demirköy, and was an important contribution to the distri-
butional records of this species.
Acknowledgements – We wish to thank Dr. AYŞEGÜL KARATAŞ, HASAN KARAKAYA, FERHAT MATUR, FERHAT TOPRAK, MÜNIR UÇAK, Dr. MUSTAFA CALAPOĞLU, and İBRAHİM KARATAŞ for their help in collecting material. This study was supported by the Research Fund of Niğde University (Nr. 01/FEB/023).

REFERENCES

Acta zool. hung. 53, 2007